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ABSTRACT

Motivation: Most approaches to identify cancer driver genes focus,
true to their name, on entire genes and assume that a gene, treated
as one entity, has (or has not) a specifc role in cancer. This
approach may be correct to describe effects of gene loss or changes
in gene expression, however mutations, splicing variants or post-
translational modifcations of proteins coded by a given gene may
have different effects, including their relevance to cancer, depending
on which region of the gene they affect. Except for rare and well-
known exceptions, there is not enough data for reliable statistics for
individual positions, but an intermediate level of analysis, between
an individual position and the entire gene, may give us better
statistics than the former and better resolution than the latter
approach.

Results: We have developed e-Driver, a method that exploits the
internal distribution of somatic missense mutations between the
protein's functional regions (domains or intrinsically disordered
regions) to fnd those that show a bias (an enrichment or depletion)
in their mutation rate as compared to other regions of the same
protein, providing evidence of positive selection and suggesting that
these proteins are actual cancer drivers. We have applied e-Driver
to a large cancer genome dataset from The Cancer Genome Atlas
(TCGA) and compared its performance to that of four other
methods, showing that e-Driver identifes novel cancer drivers and,
because of its increased resolution, provides deeper insights into the
mechanism of cancer driver genes identifed by other methods. As
an example of such insights, we show examples of e-Driver
identifying different protein functional regions in the same protein
that are relevant to different cancer types.

Availability: A web server to run e-Driver is being implemented.
Also, a Perl script with e-Driver as well as the fles to reproduce the
results described in this publication can be downloaded from
https://github.com/eduardporta/e-Driver.git

Contact: adam@godziklab.org or eppardo@sanfordburnham.org

Supplementary information: Supplementary data are available at
Bioinformatics online

1 INTRODUCTION 

The landscape of cancer somatic mutations revealed by projects
such as The Cancer Genome Atlas (TCGA)(Chang et al., 2013) or
the International Cancer Genome Consortium (ICGC)(Hudson et
al., 2010) is overwhelmingly complex, as hundreds of thousands of
different mutations, ranging from large genomic rearrangements to
point missense mutations, have been identified in different cancer
samples (Ciriello et al., 2013, Kandoth et al., 2013). Several ap-
proaches have been developed in order to identify which genes are
driving the carcinogenic process (driver genes). Such methods rely

on the hypothesis that driver genes should be under positive selec-
tion in the cancer environment. Methods in this category include
those that try to identify genes with higher than expected by
chance mutation rates, such as MuSiC (Dees et al., 2012), or those
that tend to accumulate highly damaging mutations, such as Onco-
driveFM (Gonzalez-Perez and Lopez-Bigas, 2012). More recently,
methods that focus on the internal distribution of mutations along a
protein have also been developed. For example, OncodriveCLUST
(Tamborero, Gonzalez-Perez, and Lopez-Bigas, 2013) looks for re-
gions of proteins with higher than expected mutation rates, which
makes it optimal for the identification of gain-of-function sites
that, while being key for the carcinogenic process, would other-
wise be missed. Another similar idea is ActiveDriver (Reimand and
Bader, 2013), which tries to identify phosphorylation sites that are
recurrently mutated in cancer. Note that one of the differences be-
tween the two methods is that ActiveDriver tests the mutation fre-
quencies of predefined regions (a phosphorylation site and its
neighboring aminoacids), while OncodriveCLUST first looks for
potential seeds of highly mutated clusters and then tries to extend
them.

Here we present e-Driver, a novel method that identifies protein
functional regions (PFRs) that show a bias in their mutation rates.
In this context, PFRs can be either domains or intrinsically disor-
dered regions. Our method is based on the assumption that differ-
ent PFRs within the same protein mediate different functions and,
thus, might have distinct roles in carcinogenesis. This becomes evi-
dent when describing proteins in terms of functional networks. In
such networks nodes represent different proteins and edges be-
tween nodes represent functional relationships between them, such
as physical interactions or post-translational modifications. Differ-
ent edges leading to the same node/protein are usually mediated by
different PFRs within that same protein, and mutations in the PFR
mediating one edge will have different consequences than muta-
tions in another PFR mediating a different edge. For example, if an
enzyme contains a catalytic domain and an intrinsically disordered
region that is phosphorylated, it is likely that the consequences of a
missense mutation disrupting the catalytic domain will be different
from those of a missense mutation affecting the phosphorylation
site or a truncating mutation that disrupts both PFRs at the same
time. Our method exploits this idea, which has been previously
used to analyze mutations associated with Mendelian disor-
ders(Zhong et al., 2009, Wang et al., 2012), by looking for PFRs
that show a bias in their mutation rate.
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We have applied e-Driver to the cancer genomic dataset from the
pan-cancer project of the TCGA. This dataset has also been ana-
lyzed with four other methods (MuSiC, OncodriveFM, Onco-
driveCLUST and ActiveDriver), allowing us to compare the results
obtained with e-Driver with those obtained by methods relying on
other approaches to identify the signals of positive selection (Tam-
borero, Gonzalez-Perez, Perez-Llamas, et al., 2013). 

2 METHODS

2.1 Identification of the driver PFRs

e-Driver is based on the hypothesis that not all functional regions
of a given protein are equally relevant for carcinogenesis. If this is
the case it should be reflected in the distribution of missense muta-
tions along the protein, with regions under selection showing an
enrichment or depletion of such mutations as compared to regions
with random (passenger) mutations.

In order to identify PFRs under selective pressure, e-Driver first re-
trieves all missense mutations in a cancer cohort located in any
given protein as well as the mutation coordinates and maps them to
the protein's functional regions. Then, for every PFR we use a two-
sided Fisher test to check whether the observed number of muta-
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Figure 1 - e-Driver's workflow shown in the example of the analysis of PIK3R1 mutation data from TCGA. (a) e-Driver first retrieves all missense mu-
tations in a protein. It then identifies its PFRs, such as Pfam domains or intrinsically disordered regions (IDRs). For example, in the case of PIK3R1, the pro-
tein contains four different Pfam domains (one SH3 domain, one RhoGAP domain and two SH2 domains) and two distinct IDRs. Note that the predictions are
independent and, thus, can overlap, as in the case of the second IDR and the second SH2 domain. e-Driver iterates through every functional region, calculating
the p values of the mutation distribution using a Fisher's test that takes into account the mutation rates and lengths of both, the region of interest and  the pro-
tein. (b) Example of the contingency table for the IDRb in PIK3R1. MR is the number of mutations in the region being studied; MP is the total number of mu-
tations in the protein; LR is the length of the region; LP is the length of the protein; MP is the number of mutations in TCGA in this protein.  (c) Each of the
different PFRs in PIK3R1 performs different functions. For example, the first SH2 domain is responsible for the interactions with GRB2 and PTPN6 (blue
edges), while the second SH2 domain mediates the interaction with PDGFRB (green edge) and the second IDR mediates the interaction with PIK3CA (red
edge). (d) It is likely that missense mutations in the SH2b domain of PIK3R1 will disrupt, among others, its interaction with PDGFRB without altering the rest
of the network. Given that this region is not enriched in cancer somatic mutations the functions/interactions mediated by this domain are unlikely to be onco -
genic. (e) On the other hand, IDRb is strongly enriched in somatic mutations, thus, edges mediated by this region, such as the physical interaction with
PIK3CA, are likely to be relevant to carcinogenesis. (f) The mutations in PIK3R1 (the white helical protein) IDRb region (shown in red) cluster around the re -
gion that interacts with PIK3CA (shown in brown). Representation based on PDB structure 



e-Driver

tions in this protein region (MR in Figure 1b) is biased or not. We
assume that each mutation is an independent event and that all
residues of the protein have the same probabilities of being mu-
tated. Then, given the total number of mutations in the protein,
(MP in Figure 1b) we can calculate the number of possible mutated
residues by multiplying the length of the protein by the number of
mutations in this protein. Similarly, the total number of possible
mutated residues of the region is defined as the length of the region
times the number of mutations in the protein. Once the p values of
all the regions of all mutated proteins in the cohort are obtained,
the Benjamini-Hochberg false discovery rate algorithm is applied
in order to correct for multiple testing. Those regions with a q
value < 0.05 are considered as positive. The whole process is ex-
plained in Figure 1 in the example of PIK3R1 and its functional re-
gions.

2.2 PFR annotations

We defined protein functional regions as sections of the protein
coding for individual protein domains and intrinsically disordered
regions (IDRs). We decided to include intrinsically disordered re-
gions because they can also contain important functional regions
such as phosphorylation sites or regions that regulate or mediate
protein interactions (Dunker et al., 2005).

To identify protein domains, we assigned, for each protein isoform
from ENSEMBL, annotated Pfam domains (Punta et al., 2012) an-
notated in ENSEMBL and putative novel protein domains located
in regions with no previous domain annotations, as predicted using
the AIDA server (Xu et al., 2014). We used Foldindex (Prilusky
and Felder, 2005) to predict IDRs for each protein, including in our
analysis those regions with a predicted unfolded score below –0.1. 

Finally, we mapped the different missense somatic mutations of
each tumor to these PFRs, giving us a total of 66,492 altered re-
gions in 14,421 genes based on data from 3,205 tumor samples
(see below). Among the 66,492 regions we have 36,626 Pfam do-
main instances, 4,626 putative domains predicted by the AIDA
server, and 25,240 IDR. Note that the features can overlap, as the
predictions were performed independently and there is no reason
why, for example, an intrinsically disordered region cannot overlap
with (or even be located within) a Pfam domain. Note also that for
the sake of simplicity we only analyzed the longest isoform of each
gene.

2.3 TCGA Mutation dataset

We have downloaded the dataset that was used in the TCGA pan-
cancer driver analysis (syn1729383). In order to compare our re-
sults with the ones obtained in the TCGA pan-cancer analysis we
applied the same filters to the dataset,  excluding 71 samples that
were considered to be hypermutators (Tamborero, Gonzalez-Perez,
Perez-Llamas, et al., 2013). After filtering, the final dataset con-
sists of 3,205 tumor samples with 287,822 coding missense muta-
tions.

2.4 Predicted driver genes by the other four methods

In order to assess the value of our method we compared our results
with those obtained by four different methods used previously to
predict high-confidence gene drivers in the TCGA pan-cancer
project: MuSiC, OncodriveFM, OncoCLUST and ActiveDriver
(Tamborero, Gonzalez-Perez, Perez-Llamas, et al., 2013). We
downloaded the results obtained in this analysis for three of the
four methods: OncodriveFM (syn1701498), OncodriveCLUST
(syn1701498) and MuSiC (syn1713813). Since no ActiveDriver re-

sults for the whole genome were available on the repository de-
scribing the pan-cancer analysis, we used ActiveDriver results de-
scribed in another paper (Reimand et al., 2013) and that, according
to their authors, have been obtained with very similar TCGA muta-
tion data (3,185 cancer genomes, syn2237931). Therefore, the re-
sults shown here for ActiveDriver are slightly different than those
described in the pan-cancer analysis.

2.5 Tissue-specific drivers

We classified the 3,205 tumor genomes into their corresponding 11
tissues of origin, obtaining 11 tissue-specific datasets that were
then analyzed individually with e-Driver. We then again corrected
for multiple testing by considering as positives only those PFRs
with a q value < 0.05.

3 RESULTS

3.1 e-Driver identifies known cancer drivers

In order to assess the validity of our method we reanalyzed the
pan-cancer dataset of the TCGA. This dataset contains mutation
data for 3,205 tumor samples that come from 11 different types of
tumors, and contains 287,822 missense mutations. The dataset has
been previously analyzed using four different state-of-the-art meth-
ods to predict cancer drivers from mutation data (MuSiC, Onco-
driveFM, OncoCLUST and ActiveDriver).

When applying our method to this dataset, we identified 74 protein
regions in 51 genes, showing a bias in their mutation rate when
compared to the rest of the protein (Figure 2a). Among these 51
genes, 23 are included in the Cancer Gene Census, a curated list of
512 cancer drivers (Futreal et al., 2004). This represents a strong
enrichment in CGC genes in our list of candidate drivers when
compared to random expectation (Figure 2b, odds ratio >25, p
value < 1e-16). As shown in Figure 2a, 31 of the 51 genes pre-
dicted by e-Driver (61%) are also identified by other methods. The
highest overlap of e-Driver predictions is with predictions from
OncodriveFM and MuSiC, with 21 of 51 genes (41%) being com-
mon. Regarding genes included in the Cancer Gene Census, 22 of
the 23 genes identified by e-Driver (96%) that belong to this list
have also some other signal of positive selection, as they are also
predicted by other methods.

Interestingly, there is one gene in the CGC, CREBBP, that has not
been identified by any of the other four methods, but was picked
up by e-Driver. CREBBP protein does not show any specific clus-
ter of mutations nor is it recurrently mutated in cancer, which could
explain why it is not recognized as cancer driver by the other meth-
ods. Nevertheless, its mutation pattern shows a strong bias as the
acetyltransferase domain, located between aminoacids 1345 and
1639 (12% of the protein's length) contains 20 of the 60, or 30%,
of all the mutations found in this gene (q value < 0.02).

There is one other acetyltransferase domain, in the EP300 gene,
which is also enriched in somatic mutations and identified by e-
Driver. This gene is also included in the CGC and is also identified
by MuSiC and OncodriveFM, but not by OncodriveCLUST or Ac-
tiveDriver. This observation suggests that, while EP300 is fre-
quently mutated in cancer, its mutations show no particular cluster-
ing. However, by using e-Driver we can identify the specific region
of the protein that is enriched in mutations.
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3.2 e-Driver finds potential novel drivers

We then reviewed the remaining 28 genes that are identified as po-
tential drivers by our method, but that are not included in the CGC.
Eight of them had also been identified by, at least, one other
method, supporting their potential role as cancer drivers. For ex-
ample, our method, as well as OncodriveFM, identified the MGA
gene as a potential driver. This gene encodes a dual-specificity
transcription factor that regulates expression of Myc/MAX target
genes. It suppresses the transcriptional activation by Myc and in-
hibits Myc-dependent cell transformation. The domain identified
by e-Driver is the Helix-loop-helix domain between positions 2425
and 2474 that contains 8 of the 46 mutations identified in this pro-
tein (odds ratio 13, q value < 0.001) and that mediates the binding
of the protein to E-boxes in the DNA. Additional evidence in favor
of the carcinogenic role of MGA comes from a recent study
(Lawrence et al., 2014) using a larger genomic dataset, with 4,742
cancer samples, where thanks to an increase in sample size and sta-
tistical power, MGA could be identified by MuSiC. As for the
other seven genes that were also predicted by other methods, five
of them were included in the list of 258 high-confidence drivers
described in the pan-cancer driver analysis: FRG1B, NBPF10,
DHX9, POTEF and RPSAP58. This result agrees with previous
observations that genes predicted by more than a single method are
likely to be true cancer drivers (Tamborero, Gonzalez-Perez,
Perez-Llamas, et al., 2013) and confirms the power of our method
to identify genes relevant to the disease.

Among the remaining 20 genes that are not part of the CGC and
that are not identified by any other method we have found several
potential drivers. For example, we identified two members of the
neuroblastoma breakpoint family, NBPF12 and NBPF20, as having
regions with strong enrichment in mutations. These two genes be-
long to the same family as NBPF10, one of the genes included in
the list of high-confidence drivers of the pan-cancer analysis. Inter-
estingly, the disordered regions identified by e-Driver from
NBPF12 and NBPF20 have a 94% identity, suggesting that their
potential driver role might be achieved through similar mecha-
nisms. Other interesting genes identified uniquely by our method
include POTEM, a protein that belongs to the same family as the
high-confidence driver POTEF. As in NBPF proteins, the regions
identified in POTEM and POTEF are IDR, however in this case
they do not show any homology. Another interesting fact about
POTEF is that the region identified by e-Driver does not show an
enrichment in cancer somatic mutations but instead a depletion,
suggesting that the conservation of this PFR is important for the
survival of cancer cells and for POTEF's role as driver.

3.3 Tissue-specific PFR

Cancer is a very heterogeneous disease and it is known that muta-
tions driving one type of cancer might be completely irrelevant for
another. Thus, while the pan-cancer dataset has more statistical
power due to its larger size, it is possible that there are tissue-spe-
cific drivers that cannot be detected in the pan-cancer dataset. To
explore that possibility we divided the pan-cancer genomes into 11
tissue-specific smaller datasets and analyzed each one of them us-
ing e-Driver.

Table 1. Tissue-specific drivers identified by e-Driver

Gene symbol PFR Start End Pancan qval Tissue qval Tissue

CTCF Pf00096 266 288 0.66 0.02 brca
SPOP Pf00917 39 162 0.09 0.03 ucec

  PIK3CA Pf02192 32 108 1 1.9 e-4 ucec

EGFR Pf07714 714 965 1 2.1 e-7 luad

EGFR Pf00069 712 964 1 2.1 e-7 luad

BAP1 Pf01088 4 214 0.6 0.02 kirc

CTNNB1 Pf05804 334 484 0.12 0.009 ucec

ANKRD36C IDR 543 632 0.37 0.003 hnsc

ZNF479 Pf00096 437 459 0.1 3.6 e-4 blca

FLNA Pf00630 1158 1244 1 0.009 gbm

MTOR IDR 1442 1492 0.07 2.7 e-4 kirc

While most PFRs have stronger signal in the pan-cancer dataset
than in any tissue dataset (Figure 3a, black dots), others have
stronger tissue-specific signals (Figure 3a, gray dots). This is the
case, for example, of FLT3's kinase domain, which is mostly mu-
tated in acute myeloid leukemia (17/23 mutations in this domain
happen in this type of cancer). Another example is EGFR, which
has two clearly different mutation patterns in glioblastoma and
lung adenocarcinoma (Figure 3b). In glioblastoma it is Domain II
of EGFR's extracellular region that is mostly affected by missense
mutations (Domain IV seems to be also strongly mutated, although
since it is not annotated in Pfam it has not been analyzed by e-
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Figure 2 - e-Driver identifies known cancer driver genes. (a) Venn dia-
gram showing the overlap between the five different methods in their predic-
tions. (b) Venn diagram showing the overlap between the five different
methods at predicting genes included in the Cancer Gene Census.
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Driver), and there are almost no mutations in the kinase domain.
On the other hand, in lung adenocarcinoma there are almost no
mutations in the extracellular region and most mutations are lo-
cated in the kinase domain of this protein.

There are 11 PFRs in 10 different proteins that can only be identi-
fied in the tissue-specific datasets (Pancan qval > 0.05, Tissue qval
< 0.05, Table 1). These tissue-specific drivers are strongly enriched
in cancer drivers, as 8 out of 10 proteins are part of the CGC. Be-
sides the identifications of EGFR's kinase domain (Pf07714) in
lung adenocarcinoma, which have been explained above, there are
other interesting examples in the list. For example, while most
PIK3CA mutations are located in the Pf00613 domain (including
the well studied E545K) and happen in a variety of cancer types,
the Pf02192 domain, also known as ABD domain, is mostly mu-
tated in endometrial cancer.

4 DISCUSSION AND CONCLUSIONS

Here we evaluated the hypothesis that some cancer driver genes
might accumulate mutations only in those functional regions (do-
mains or disordered regions) that are relevant to the disease. In or-
der to test this idea, we have developed a novel approach, e-Driver,
and applied it to one of the largest available datasets of cancer ge-
nomic data, the TCGA's pan-cancer project. Our method checks,
for each PFR, whether it shows a bias in its mutation rate when
compared to the rest of the protein. Since it uses only mutation
data for individual proteins, e-Driver, unlike other methods that
compare mutation rates of whole genes, does not need to compen-
sate for variations in mutation rates across the entire genome (De
and Michor, 2011). Another novelty of our method is that protein
domains and IDRs are usually larger than the clusters identified by
other methods. This feature is important, as small-clusters of muta-
tions are usually located in oncogenes rather than in tumor-sup-
pressor genes. By using larger functional regions we can identify
tumor-suppressors whose contribution to carcinogenesis depends
solely on the mutation status of specific regions.

The advantages of our method are exemplified in the identification
of MGA using the TCGA dataset. This gene was not mutated in
enough samples to be identified by methods that rely on the muta-
tion frequency of the whole gene (note that in a recent study with
more cancer samples these methods where able to identify MGA as
a potential cancer driver). Because this gene acts as a tumor sup-
pressor the range of positions that can be mutated in order for it to
drive the tumor's growth is too large to be identified by Onco-
driveCLUST. However, its mutations tend to accumulate in its He-
lix-loop-helix domain rather than in the rest of the protein, allow-
ing e-Driver to find it.

One drawback that comes from the use of predefined regions is
that if the gene has no such regions, or the regions cover the whole
gene, the gene cannot by identified using our method. This is the
case, for example, in IDH1 and IDH2 (Yan et al., 2009). These two
known cancer driver genes encode single-domain proteins. In this
scenario, even though their only PFRs are frequently mutated in
cancer and show clusters of mutations, e-Driver can not identify
them. In the case of unannotated proteins, since there are no known
PFRs, our method has nothing to compare, so they can't be ana-
lyzed. However these represent less than 10% of the human
genome (and less than 3% of the proteins with at least one muta-
tion in TCGA, supplementary Table 3). It is important to notice
also, that just like most other methods that rely on mutation fre-
quencies to identify potential drivers, e-Driver will also benefit
from the increase in number of sequenced cancer genomes, as the
statistical power will be larger allowing it to identify novel regions
(Supplementary Figure 2).

Another scenario are proteins enriched in mutations in an unanno-
tated region (such as EGFR's extracellular Domain IV) e-Driver
will not be able to identify that specific region. In this latter case,
however, as long as the protein contains an annotated PFR, e-
Driver should be able to find the protein, as it will pick up the an-
notated PFR because of its lack of missense mutations. Another in-
teresting feature of e-Driver is that, since it detects which PFRs are
relevant for each type of cancer, it might also help in defining
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Figure 3 – Tissue-specific drivers identified by e-Driver. (a) Correlation plot showing the q values obtained for each region in the pan-cancer dataset
compared to the lowest q value obtained for that region in the 11 different tissues. Dots in gray represent regions with lower tissue-specific than pan-cancer
q values whereas black dots have lower pan-cancer than tissue-specific q values. Dashed lines are located in the q = 0.05 threshold that we established to
consider a region as a potential driver (b) Histograms showing the mutation distribution of EGFR in three different datasets: pan-cancer (lower histogram,
black), lung adenocarcinoma (middle, light gray) and glioblastoma (top, dark gray). In the pan-cancer and glioblastoma datasets only EGFR's extracellular
Domain II (positions 185-338, between dashed lines) is enriched in mutations, while the kinase domain (positions 714-965, between dashed lines) shows no
bias in its mutation rate. However, in lung adenocarcinoma it seems that only the kinase domain that is relevant, as most mutations (19/21, 90%) are located
in such domain.
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strategies to design and administer drugs. For example, it has been
recently shown that the two different patterns of mutations that we
observed in EGFR for glioblastoma and lung adenocarcinoma have
therapeutic implications as to which type of EGFR inhibitors work
in each case, as they deregulate EGFR's activity through different
mechanisms (Vivanco et al., 2012). Another example are
PIK3CA's Pf02192 and Pf00613 domains, which are also driving
different subsets of cancer and that determine the response to the
IGF1R inhibitor AEW541 (Porta-Pardo and Godzik, submitted).

Overall, we have shown that our approach can identify both, well
known oncogenes, as well as novel cancer drivers. Moreover, be-
cause of a direct connections between protein regions and specific
elements of the protein function, it can also provide further hy-
potheses the mechanisms of driver genes.  Given the complexity of
the problem of identifying cancer drivers it is likely that the combi-
nation of multiple approaches looking for distinct signals of posi-
tive selection is going to be needed in order to get to the final an-
swer. For example, neither e-Driver of any of the other methods
discussed here work with data regarding somatic copy number
variations, a type of mutation that can be driving several subsets of
cancer (Ciriello et al., 2013). Here we have demonstrated that e-
Driver can provide a novel, insightful and complementary view of
the problem, contributing to its solution.
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